Primate and Predator Project Annual Report 2013

Reviewing achievements from the partnership between Durham University, Lajuma Research Centre, the Earthwatch Institute and landowners in the Soutpansberg Mountains
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

1. **RESULTS AND UPDATES** .. 2
 1.1 Primate data .. 2
 1.1.1 Samango monkey research ... 2
 1.1.2 Chacma baboon research ... 5
 1.1.3 Primate transect ... 6
 1.2 Predator-prey ecology .. 6
 1.3 Predator data .. 8
 1.3.1 Camera trapping ... 8
 1.3.2 Leopard and brown hyaena GPS collaring ... 9
 1.3.3 Human-wildlife conflict ... 10
 1.3.4 Scat analysis ... 12
 1.3.5 Hyaena data ... 12

2. **GENERAL NEWS AND UPCOMING RESEARCH** .. 13
 2.1 Dissemination of data ... 13
 2.2 Media attention and trapping .. 13
 2.3 Development of a PPP camp ... 13
 2.4 Project receives a new car ... 14
 2.5 New staff member - Primate Research Coordinator ... 14
 2.6 Upcoming hyaena camera trap grid and hyaena education efforts 14
 2.7 Nature Night .. 14

3. **EARTHWATCH INSTITUTE INVOLVEMENT** .. 15
 3.1 Community fellows .. 15
 3.2 Scientists from around the world join Earthwatch at Lajuma .. 15
 3.3 WESSA Eco-schools news and donations ... 16

4. DONATE TO THE PRIMATE AND PREDATOR PROJECT .. 16

5. THANK YOU .. 17

6. MORE INFORMATION .. 17
 6.1 Websites ... 17

7. CONTACT US .. 18

8. REFERENCES .. 18
Executive summary

In 2013 the Primate and Predator Project has had a number of successes which will be briefly outlined in this summary.

Three leopards, five baboons and four brown hyaenas were collared for research this year. The leopard collars and the baboon collars ‘communicate’ with each other as part of an investigation into predator-prey relationships. Leopard and baboon interactions have been recorded 24 times thus far.

Samango monkeys are also strongly affected by risk of predation, especially from eagles (Coleman, 2013). Fear of predation in samangos has a horizontal axis with a proven preference for higher foraging heights compared to at or near ground level. However samangos are more likely to forage at lower levels when humans are present suggesting that observers may act as a predation buffer.

This year long term research on a habituated troop of baboons was launched alongside a collaborative primate population survey.

Camera trapping data have been used to determine regional leopard densities. Leopard density in the Soutpansberg Mountains is the highest recorded on private land in Africa at 10.73 adults per 100 km² (Chase Grey et al., 2013). Leopard density around Blouberg Nature Reserve is approximately 5 leopards per 100km² with densities on commercial farms surrounding the reserve less than 1 leopard per 100km² (Constant, In Prep). The low number of leopards on farmland may be attributed to high levels of human-wildlife conflict. All three leopards collared in 2012 were killed due to human impact. Data from interviews focussing on brown hyaenas and baboons also confirm significant levels of conflict and negative attitudes towards wildlife by certain groups. The project began a new phase of greater community engagement to respond to these findings.
1. Introduction

The Primate and Predator Project (PPP) was established through a partnership between Durham University and Lajuma Research Centre in early 2011.

The Primate and Predator Project aims:

(i) To assess the role of mountainous regions in biodiversity conservation
(ii) To understand the behavioural ecology of predator-prey interactions focusing on diurnal primates and their predators as a model system
(iii) To evaluate the nature and extent of human-wildlife conflict within the Soutpansberg Mountains

This year the project has moved forward in a number of significant ways including preparing results for publication, building better facilities and engaging with the community to a greater extent. We hope you will enjoy reading this report and sharing in our successes.

2. Results and updates

Sir Arthur Conan Doyle’s famous fictional detective, Sherlock Holmes, said, “Data! Data! Data! I can’t make bricks without clay!” The past two years have focussed on gathering quality data on primates, predators and people living and around in the Soutpansberg Mountains. Now we have the basic building blocks to create meaningful results which can be used to influence practical conservation. It is an exciting time for the project.

2.1 Primate data

Our primate research is currently focussed on habituated samango monkeys (Cercopithecus mitis erythraechus) and chacma baboons (Papio ursinus) that range on Lajuma and neighbouring properties.

2.1.1 Samango monkey research

A collaborative project which included organisations such as the National Zoological Gardens of South Africa, the University of Venda and the University of Cape Town conducted genetic analysis of blood, tissue and hair samples collected from 72 samango monkeys from six southern African populations, including individuals at Lajuma Research Centre, to examine their evolutionary history. Morphological data indicated that samangos from the Soutpansberg are distinctly larger in size and have disproportionately longer tails compared to other populations. The size differentiation might be attributed to adaption to higher latitudes and elevations. However a population in the Hogsback live under similar geographic conditions and samango monkeys there are smaller in size suggesting that nutritional constraints and environmental factors may also contribute (Dalton et al., In Prep).

Samango monkeys from the Soutpansberg Mountains are closely related to individuals from Magoebaskloof yet are genetically distinctive from monkeys sampled in Sodwana Bay and Cape Videl. Samango monkeys from the inland populations of the Soutpansberg and Magoebaskloof have notably different hair colouration and characteristics than monkeys from coastal communities and
the Hogsback. The samango monkeys in the Soutpansberg are currently classified as *Cercopithecus mitis erythrarchus*, but this study concludes that they should be reclassified within the same subspecies as Magoebaskloof samangos, *Cercopithecus albogularis schwarzi* (Dalton et al., In Prep). This study has highlighted the unique characteristics and genetic importance the Soutpansberg samango monkeys which helps to support the significance of our behavioural research.

At Lajuma Research Centre there are two habituated troops of samango monkeys - the House and Barn troops. Since February 2012 the two troops of monkeys have been studied using a uniform methodological procedure developed by the Primate and Predator Project. Researchers follow the monkeys from when they wake up at dawn until they settle in their sleeping sites just after dusk and record scan sample behavioural data every 15 minutes.

2.1.1.1 Variation in samango diets

Ellie Darbey, an undergraduate student from Cardiff University in the UK volunteered with the project for ten months. She conducted a research project focussing on annual and seasonal variation in samango monkey diets.

Samango monkeys consumed 23 tree species and one liana during 7,165 feeding events between May 2012 and April 2013. Fruit and leaves were the most important food sources for samango monkeys composing 73% of diet (see Figure 1). Fruit consumption was higher during the wet season and a diversification in food sources was more common during the dry season when less fruit was available. This result is comparable with studies of other primate species (Darbey, 2013).

![Figure 1: Overall proportion of food items composing samango monkey diet during 12 month study (Darbey, 2013).](image_url)

No correlation was found between food availability and consumed food plants. This trend may be attributed to samangos concentrating on a singular food species during its fruiting season. The three most important types of tree species in samango diets at Lajuma Research Centre are *Acacia ataxacantha, Rhus chiridensis* and members of the fig family (notably *Ficus sur, Ficus burkei* and *Ficus*...
The outcome of this study on samango feeding behaviour is vital for species conservation in relation to habitat management (Darbey, 2013).

2.1.1.2 Landscapes of fear research

Ben Coleman was awarded his PhD this year for his research on predation avoidance behaviour in samango monkeys at Lajuma. Since completing his PhD he has been acting as the Primate Research Coordinator for the PPP and submitting his PhD results to peer-reviewed journals.

Ben’s PhD mainly looked at the way in which the samangos try to minimise predation risk by space use and through vigilance behaviour. A paper published in Animal Behaviour is based on the landscapes of fear he created. A “landscape of fear” is a space where a prey species perceives higher predation risk (Laundre et al., 2001). This was achieved by mapping the eagle specific alarm calls and the inter-group encounters of the samango group he followed. With some (relatively) fancy stats Ben was able to conclude that the samangos avoid areas they perceive to be of high eagle risk even though there might be other resources in there (Coleman, 2013). Ben’s thesis can be downloaded in full from the Durham University Library by clicking here.

Ben is hoping to publish another paper which looks at how diet varies over the entire distribution of the species, which is all the way from Ethiopia down to the southern coast of South Africa. It seems that the further south the population the higher percentage of fruit in their diet and the further north there is more animal matter in the diet. This paper should be going under review for Folia Primatologica very soon.

The 3rd paper will hopefully be based on the “landscapes of vigilance” Ben created. It’s not something that had been tried by anyone before, but he mapped how vigilance varied over the samangos’ home range. Comparing this to the landscape of fear showed that the samangos look upwards more in areas they consider to be high risk of eagle predation.

2.1.1.3 Giving up density experiments

Landscapes of fear can be tested experimentally using giving-up density experiments. Dr Kate Nowak joined the PPP this year as a post-doctorate researcher with the aim to achieve this. Between June and August she conducted a giving up density experiment on both samango monkey groups. An animal’s giving-up density is the point at which the benefit of searching for food is outweighed by the risk of predation or, in other words, the moment when the animal ‘gives up’ foraging from a controlled food patch (Brown, 1988). With help from PPP Research Assistants, Kate set up and monitored food patches at ground level (0.1m) and three tree canopy levels (2.5m, 5m and 7.5m) (Figure 2). Giving up densities were greatest at ground level indicating a vertical axis of fear. Interestingly when human observers were present, giving up densities were lowered across all canopy heights but most significantly at the bottom two heights, suggesting that monkeys may perceive people to be a shield from predation. This perception affects their foraging behaviour and food intake at or near ground level. This result may be useful for other studies considering the effects of habituation on primates.
Figure 2: Giving-up density food patches hung at different heights in trees (left). Ropes were woven across the top of buckets to make access to food sources more challenging for samangos (right).

2.1.2 Chacma baboon research

At the beginning of July baboon researcher and Durham University PhD student, Pete Tomlin, returned to the UK to write up his doctoral thesis, and a new stage of baboon research began at Lajuma.

The Primate and Predator Project devised a methodology for baboon data collection based around a combination of scan sampling (data are collected on all individuals sighted within a five minute period) and focal sampling (data are collected on a particular individual’s activities during a ten minute period). Long-term data collection will allow the PPP to understand seasonal feeding, ranging and behavioural activity, and also allow us to monitor how baboons respond to significant environmental changes such as clearing fields for crops. The baboon research assistants were quick to learn how to individually identify all members of the 80 strong troop at Lajuma. Results from this new facet of research will be analysed once we have established a larger dataset.

2.1.2.1 Crop raiding research in the lowveld

Leah Findlay, a PhD candidate from Durham University, is studying crop raiding by baboons at Mogalakwena Research Centre near Alldays. Her study assesses local knowledge, attitudes, perceptions, and tolerance of primate ‘pests’ and crop raiding. In November she hosted a baboon crop raiding workshop for local farmers to share raiding experiences and mitigation strategies (Figure 3). In 2014 she will be testing the efficacy of these proposed techniques on baboon troops.
2.1.3 Primate transect

The PPP partnered with University of Venda PhD student, Birthe Linden, to launch a new study which will monitor trends in relative abundance of samango monkeys and other species in eastern and western sections of the Soutpansberg Mountains. Two-kilometre transects were established by the PPP in the western Soutpansberg. On a monthly basis research assistants walk these transects recording data on all encounters (visual and auditory) with primate species. The transects are walked again in reverse, this time recording all dung and other discreet signs of target species.

2.2 Predator-prey ecology

One of the project’s research aims is to investigate predator-prey relationships. Baboons and leopards act as a model system to understand this relationship. This year we affixed collars onto five female baboons from Lajuma’s habituated troop. One female received a GPS collar which logs the troop’s location and collects data on activity patterns. Four other baboons were fitted with proximity tags which record group spread in relation to the GPS collared individual. Signals from the baboon proximity tags are also detected by collars deployed onto leopards when they approach the troop, which log the location and time of the interaction and trigger a more frequent GPS fix schedule.

The data gathered on baboon and leopard interactions so far has been fascinating. Two collared leopards (one male and one female) have come into contact with the baboon troop on 24 occasions (see Figure 4). From this data risky habitats and time periods for baboons, and how group spread changes in relation to leopard presence will be determined. These data will be coupled with behavioural data taken by baboon observers.
The collaring of baboons was very successful (Figure 5). The collars have not affected behaviour or rank within the troop (Figure 5). One of the collared females recently gave birth to a healthy baby and has proven to be an excellent mother.

GPS data from the habituated baboon troop at Lajuma indicate that the troop has a home range of 17 km². A female baboon was also collared during Leah Findlay’s crop raiding study near Alldays. This troop has a much larger range of 30 km². The larger home range may be attributed to lower food and water availability, and potentially due to attempts to avoid conflict with people.
2.3 Predator data

2.3.1 Camera trapping

Unfortunately our static camera trapping grid, which had been in position for two years had to move drastically in August. It is important to have stability in our camera trapping grid to assess long-term trends across species. The grid shifted further east thanks to support from Liesel and Neil Wright of Sigurwana and Tolo. We are excited to find new leopards there and to have a new base for surveying.

2.3.1.1 Leopard densities in the Soutpansberg Mountains

Analysis is currently underway to determine current leopard densities from data collected over the past two years and to detect changes in the western Soutpansberg population. These data will be ready in early 2014.

Data from 2008 on leopard density in the area became publically available this year through the publication of an academic paper in the open access journal, PLoS One. Dr Julia Chase Grey is the lead author of Evidence of high density population of harvested leopards in a montane environment which concludes that leopard density in the western Soutpansberg Mountains is 10.73 adult leopards per 100 km². This is the highest adult leopard population density recorded outside of state-protected areas in Africa. This case study indicated that mountainous and mostly privately owned land is a vital habitat for leopards and must be prioritised in large carnivore conservation (Chase Grey et al., 2013). This paper can be downloaded in full as a PDF for free from here.

2.3.1.2 Leopard densities around the Blouberg Mountains

Leopard populations in the vicinity of the Blouberg Mountains have been analysed through the work of Durham University PhD candidate, Natasha Constant. Natasha’s work primarily focussed on leopard numbers and relationships with people near the base of the Blouberg Mountains (Constant, In Prep).

The results of the study produce the first density estimate for leopards within a protected area in the Blouberg (5.4 leopards per 100km²). Density estimates on commercial farms are lower than in the reserve at 0.74 leopards per 100km². Most mortality occurs outside of reserve borders where leopards come into conflict with people because they are killed legally, illegally and accidently by people, with a reported number of seven leopard deaths by farmers over a two year period in the study area. Considering that most leopard deaths are unlikely to be reported, mortality rates are likely to be much higher.

The population structure of leopards in the Blouberg Nature Reserve and commercial farms is characterised by a high ratio of males to females of 6:2 and 2:1 respectively. This compared with a female biased sex ratio of leopards of 5:9 in the Soutpansberg. The biased sex ratio may result from the higher capture probabilities on cameras of males compared to females because of their larger home range size and greater dispersal abilities, but could equally reflect high levels of mortality resulting in the re-colonisation of migrant males into the population.
The difference in density estimates between the Blouberg and Soutpansberg may result from several factors: 1) increased anthropogenic pressure in the Blouberg due to a higher human population density, livestock and game farms as well as communal land increases human-leopard conflicts and rates of persecution, 2) population sinks resulting from high mortality rates on commercial farms alters the population structure and breeding success of females and 3) differences in land use patterns and environmental conditions influence the suitability of the Blouberg to sustain high leopard numbers. Nevertheless the Blouberg leopard population is of conservation concern because anthropogenic factors have caused a significant decline in leopard numbers across small spatial scales, questioning the resilience of the population to recover from ecological and anthropogenic perturbations.

2.3.2 Leopard and brown hyaena GPS collaring

This year the project GPS collared two adult male leopards named BB and Anakin, one adult female leopard named Jenny, and four brown hyaenas (Figure 6). We would like to extend our thanks to the landowners who supported this work on their land, namely Ian Gaigher, Stephan and Marianne Fick, and Jan and Emmie Crafford.

![Collaring Jenny, an adult female leopard (left). Collaring Hermione, an adult brown hyaena (right).](image)

Predator home ranges were calculated by joining the peripheral GPS points. This method can overestimate regular utilisation but is still useful for giving an indication of the total area occupied. When we add the new collar data to the data from the three leopards that we collared last year, the average adult female leopard occupies 18 km2 and the average adult male leopard occupies 105 km2. Figure 7 illustrates the overlap and relative territory sizes of all leopards collared in 2012 and 2013.
We have not yet been successful in downloading from any of the collared brown hyaenas despite numerous attempts suggesting that brown hyaenas may have unexpectedly large home ranges in this area.

2.3.3 Human-wildlife conflict

In 2012 the project caught and affixed GPS collars to three adult leopards. From these collars we received valuable data about home range sizes, leopard movement, activity patterns and interactions with humans. Sadly the extent of human-wildlife conflict is the most poignant outcome from the collaring. All three leopards we collared last year were killed as a result of human activity. Drogo, a large male leopard who had a huge home range of 180 km2 extending across the top of the mountains and onto the farms below, was shot by a farmer for killing cattle in December 2012. CC, an adult female who had been observed on camera traps at Lajuma since 2006 when she was only a cub was collared in July 2012. In October 2012 she died from a snare wound tightly on her foot (Figure 8). Michel was observed on our camera traps in August 2013 with a snare around his waist (Figure 9). As soon as the problem was detected we attempted to re-catch Michel to remove his collar which was due to fall off and to treat the snare wound. Unfortunately after over a month of trying we did not catch Michel and he disappeared from the cameras. According to veterinary opinions and an informal local report we believe that Michel has died from the injury. The snaring problem was reiterated to us when a baboon from the study troop picked up a snare on his hand. A vet was able to dart the baboon and remove the snare. Thankfully he made a full recovery.
Through close observation of known leopards over the past few years we have observed a fairly high level of turnover in leopard population within our camera trapping grid, but only with GPS collaring, we been able to confirm some of the reasons behind these trends. Although we are distressed by the high mortality of last year’s collared leopards, this information has fuelled us to have greater involvement in countering human-leopard conflict. In October we began working closely with the Kranspoort community after a calf was killed by a leopard. The PPP team provided labour and materials to build a new stronger boma for cattle to prevent further attacks at the site (Figure 10). In 2014 we will be hosting an educational event for the community about living with predators and invest in the construction of additional bomas thanks to funding from the Earthwatch Institute. The project has also been successful at helping several commercial farmers who have encountered depredation by leopards. Community involvement is an area we are hoping to become more involved with in future.
2.3.4 Scat analysis

The project has been collecting leopard and brown hyaena scats for dietary analysis since June 2011. Thus far we have collected 207 brown hyaena scats and 313 leopard scats. In 2014 Durham University student, Leanne Fitzgerald, will be analysing the leopard scats for her Masters degree and Katy Williams will be analysing the hyaena scats for her PhD.

2.3.5 Hyaena data

Katy Williams is completing her PhD on human-brown hyaena relationships. Her research unites biological methodologies (camera trapping, scat analysis and GPS collaring) with social science methods (interviews and participant observation) to gain a complete picture of the ethology of hyaenas, the threats they face and people’s perceptions of the species. Thus far she has conducted 96 face to face interviews with owners and managers of commercial land, members of the Buysdorp community, members of the Thalane community and traditional healers.

All commercial landowners or managers said that brown hyaenas were present on their land and that they see signs of them. The commercial farmers are the most accepting group towards hyaenas with many people stating that they like them and do not mind sharing their land with them. Interestingly the commercial farmers are also the group who are most likely to encounter problems with them. Some commercial landowners have experienced problems with brown hyaenas but the frequency of instances is much lower and more isolated than problems with leopards. Leopards were stated as the most problematic predator. Seven, primarily livestock, farmers stated that they had experienced losses from brown hyaenas. Half of these landowners do not see brown hyaenas as a problem animal however because the losses were few in comparison to leopard losses, the amount of damage was low and attacks were infrequent. Four primarily game farmers or hunting operators lost game due to brown hyaenas. Only a small number of commercial landowners admitted to killing brown hyaenas.
Forty six per cent of Buys people interviewed said the brown hyaena lives in the area. The majority of Buys disliked brown hyaenas immensely. They were perceived as threatening to human wellbeing and livestock although only three respondents reported livestock losses from brown hyaenas.

Most Thalane people, who are mostly Sotho speaking, were unaware of hyaenas living locally and only two people claimed to have seen one. The Thalane are very fearful towards hyaenas and think that hyaenas pose a risk to human life and to livestock. Almost all informants were aware of stories about witches using hyaenas to help them cast spells or for transportation. This was sometimes stated as a reason for disliking the animal. Several people expressed a dislike towards hyaenas because they cannot be eaten suggesting the importance of utilitarianism in their culture.

Thank you to everyone who has participated in these interviews.

3. General news and upcoming research

3.1 Dissemination of data

The data collected by the Primate and Predator Project is being analysed and written up for publication in peer reviewed journals so that it will be available to the scientific and conservation community. We also publish popular articles in local media in order to keep the local community informed. In addition we are sharing the data we collect with other projects such as the Red List of Mammals for South Africa, which is used to assess the status of species and to facilitate conservation planning on a national scale. We are also contributing towards MammalMap, an initiative to map the distributions of all African mammals.

3.2 Media attention and trapping

While attempting to catch Michel to remove the snare on his waist, the British Broadcasting Corporation (BBC) heard about Michel’s plight and sent a film crew to South Africa to cover the story as part of a documentary which will air in the UK in 2014.

3.3 Development of a PPP camp

Dr Russell Hill, PPP Principal Investigator, secured a grant to develop a pre-existing camp at the Lajuma Research Centre into the PPP headquarters. Thanks to this investment and a lot of hard work by workers at Lajuma, the project gained an office, a store room, a solar power system, and improved and additional accommodation (Figure 11).
3.4 Project receives a new car

In July the project received a grant from Durham University to purchase a car for community engagement and research purposes. The bakkie has already enabled us to visit farmers and communities experiencing leopard problems, and to present scientific results at the Greater Mapungubwe Network meeting in November.

3.5 New staff member - Primate Research Coordinator

As the project has grown, the amount of staff on site has grown along with it. This year a new position was created to help manage the primate data collection. Dr Ben Coleman has been acting as the Primate Research Coordinator but he will be returning to the UK soon. He will be missed but we look forward welcoming Caroline Howlett to the role in early 2014.

3.6 Upcoming hyaena camera trap grid and hyaena education efforts

In 2014 Katy Williams will be setting up several three month long camera trapping grids covering areas north, south and on top of the mountains to estimate brown hyaena occupancy and density.

Katy was the recipient of the 2013 – 2014 Earthwatch Schulman Award. This grant will fund a yearlong project starting in December 2013 to engage people in Buysdorp with wildlife by sharing camera trap images of known individual animals (specifically brown hyaenas and leopards), and the production of an illustrated children’s book about brown hyaenas which will be distributed to schools in several local languages. The project aims to reduce misconceptions about brown hyaenas and improve attitudes towards them.

3.7 Nature Night

Nature Night, an educational evening focussing on sharing knowledge about animals in the region is being organised by the Primate and Predator Project. Three guest speakers from different research / conservation organisations will share information about three iconic species from our region; samango monkeys, leopards and Cape vultures. The evening is free for anyone to attend. Snacks and
some drinks will be provided courtesy of the PPP. The date and venue are currently being finalised but we are hoping to host it on February 20th. Information will be circulated shortly.

4. Earthwatch Institute involvement

The PPP hosts an Earthwatch Institute project called ‘Conserving leopards and monkeys in South Africa’. At several times throughout the year volunteers from around the world work with the PPP for 12 days at a time. Their involvement helps us to achieve our research aims and to financially support the project. Since March 2011 we have led 16 groups.

4.1 Community fellows

This year our Earthwatch project was given the opportunity to invite local people to join the project as Community Fellows. We received a grant to allow fifteen local people to join an Earthwatch expedition who would not normally be able to attend.

Students from the University of Venda and the University of Limpopo, staff members from Moyo Conservation Project, Mogalakwena Research Centre, Birding Soutpansberg, and SAN Parks, and a local young person helping with the PPP’s brown hyena research learnt conservation skills, met people from all over the world and experienced nature (Figure 12).

4.2 Scientists from around the world join Earthwatch at Lajuma

This October we had the amazing opportunity to lead an Earthwatch team for ten emerging scientists from across Africa and the Middle East. The group took part in data collection and received training sessions on scientific theory and methodologies from PPP staff members. Everyone learnt a lot and gained experiences which will be applicable in their developing careers in conservation (Figure 13).
4.3 WESSA Eco-schools news and donations

Earthwatch volunteers at Lajuma help Judy van Schalkwyk, the Blouberg Node Coordinator for WESSA Eco-schools, to deliver environmental education for local school children.

One Earthwatch team this year met Sello Boloka, a bright little boy from Selelo Primary School near Blouberg who has been suffering from a painful eye condition for seven years. The Earthwatch volunteers wanted to give him the best chance to reach his potential and sponsored medical treatment and a new school uniform for Sello. These sorts of gestures alongside all the encouragement and teaching Earthwatch volunteers contribute during school visits mean so much for children’s futures in this area.

Judy is hoping to teach local school children about water pollution issues by encouraging schools to participate in the World Water Monitoring Challenge. If anyone would like to help her achieve this goal by ordering water test kits for $13 from http://www.monitorwater.org/Order_Kits.aspx it would be greatly appreciated. Contact Judy by emailing judy-enviroeducation@hotmail.com for more information.

5. Donate to the Primate and Predator Project

The important work we are doing to protect primates, predators and the biodiversity of the Soutpansberg Mountains is not possible without on-going funding. If you would like to donate towards the project please follow these instructions:

Go to the Durham University website (http://www.dur.ac.uk/), click on “Alumni”. When the page opens, click on “Donate” on the left-hand-side. This will open a page, on which they should click on
“Other areas of support”. When the page opens, click on “Other areas of support”, and on the “Designation” drop-down box click on “Other” and write in “Primate & Predator Project – Dr R Hill”.

6. Thank you

The Primate and Predator Project is extremely grateful to the following people for their support:

- Professor Ian Gaigher
- Oldrich and Judy van Schalkwyk
- The landowners in the Soutpansberg Mountains who allow us to work on their land or offer support in other ways
 - Owners, families and staff of Bergplaas, Diepkloof, Goro, Koedoesvlei, Kranspoort, Leshiba, Llewellyn, Louisville, Ontmoet, Ottoshoeck, Ottosdal, and Sigurwana and Tolo
 - Peter Breedveld of Sigurwana and Tolo for driving research assistants to check camera traps
- The interviewees who assisted the brown hyaena research project
- The volunteer research assistants who have helped with data collection this year
 - Marion Grohier, Christoph Eckrich, Ellie Darbey, Mike Heneghan, Rebecca Melville, Noeks Cilliers, Ciska Scheijen, Gregoire Moutardier, Rachel Stokes, Leanne Fitzgerald, Kasim Rafiq, Tyler Carver, Sophie Kirklin, Chloe Wright, Grace Kennedy, Carson Young, Elliot Lustig, Sophie Tuppen, Mira Kajanus, Nicolas Guillod, Kaja Heising and Katie Dobson
- The veterinarians who helped with collaring
 - Dr Nicolene van der Berg, Dr Adrian Tordiffe, Dr Freddie Harris, Barend Harris, Dr Gerhard Klopper, Dr Cheri-lee Wilson, Dr Shaun Beverley, Dr Roy Page
- The Earthwatch Institute and our Earthwatch volunteers

7. More information

7.1 Websites

Project website: www.dur.ac.uk/r.a.hill/primate_and_predator_project.htm

Blog: http://primateandpredatorproject.wordpress.com/

Facebook: http://www.facebook.com/pages/Mammal-Conservation-in-South-Africa/168026853274442

Earthwatch project: http://www.earthwatch.org/exped/hill_research.html

You can find us on Twitter @PrimatePredator
8. Contact us

Sam and Katy Williams
Primate and Predator Project
Lajuma Research Centre
PO Box 522, Makhado, 0920, South Africa

Email: primate.predator@durham.ac.uk
Phone: +27 (0) 833087027 or +27 (0) 214020259

9. References

